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Kakinoki & Komura's general theory on the intensity of X-ray diffuse scattering by one-dimensionally 
disordered crystals is applied to stacking faults occurring in close-packed structures. Practical examples 
are shown for the cases of s (Reichweite)= 1, 2, 3 and 4, which cover the results given by Paterson, 
Wilson and Jagodzinski. The cases of double (extrinsic)-deformation fault (Johnson), triple-deforma- 
tion fault (Sato), multiple-deformation fault, single and double-deformation faults (Warren) and com- 
binations of different kinds of faults are also dealt with by applying the general method without using 
difference equations. 

Introduction 

The general theory given in part I (Kakinoki & Ko- 
mura, 1965) showed .that the X-ray intensities of diffuse 
scattering from one-dimensionally disordered crystals 
can be calculated straightforwardly if a table of con- 
tinuing probabilities for successive layers in each struc- 
ture is correctly given. In this calculation, it is not 
necessary to follow a laborious procedure dealing with 
difference equations. 

One of the important examples of one-dimensionally 
disordered crystals concerns displacement stacking 
faults, in particular the stacking faults occurring in 
cubic and hexagonal close-packed structures. The pre- 
sent paper shows the practical procedure for applying 
the general theory to these structures. The results so 
far obtained by many researchers are also discussed 
from the viewpoint of the new method. 

General method of solution 

In close-packed structures, there are three kinds of 
layer, A, B and C, for which the layer form factors 
can be expressed respectively as 

V.4- Vo, lib = Voe* and Vc = Voe 
with e=exp{2rci(h- k)/3} . 

When h -  k = 3n (n = 0, + 1, _+ 2 , . . . ) ,  we have e = 1 and 
hence Va = VB = Vc. As a result, the well-known inten- 
sity formula 

Vo V~ sin2(N~o/Z)/sin2(tp/2) 

is at once derived independently of the kind of fault. 
Here, N is the number of layers, and rp =2re(, ( being 
the continuous variable along a line parallel to c*; 
c* is the axis reciprocal to c of the real crystal. 

We treat hereafter only the eases in which h - k =  
3n _+ 1. Therefore, we have 

where the upper sign in + or ~ corresponds to the 
case h - k = 3 n +  1 and the lower to the case h - k =  
3 n - 1 .  These two cases correspond to two kinds of 
line parallel to e* in reciprocal space. For convenience, 
the line corresponding to h - k = 3 n +  1 is called the 
plus line and that corresponding to h - k = 3 n - 1  the 
minus line. 

The intensity equation in the case of displacement 
stacking faults is given by equation (1-3)]" i.e. 

ID(~) = VoV~I(~o)= 
N----1 

VoV~{N+ S (N-m)Tme- i '~+conj . }  (1) 
m----I 

with 
Tm= spur eFP m and To = 1 (2) 

where conj. means the complex conjugate of the fore- 
going term and 

(~)j~=e~e~ and (F)t~=3qJlj . ' .  (cF)j~=j~e~e~ 
(P)~j=P~j. (3) 

The parameter e~ is the phase factor due to the dis- 
placement, parallel to the layer, of the origin of the 
layer i, and, in the present case, 

e,4 = 1, e~ = e* and ec = e ; 

j~ is the existence probability of the layer i, and P~j 
the continuing probability of the layer j to the layer i, 
J~j being Kronecker's delta. 

Since a layer cannot follow a layer of the same kind 
in a close-packed structure, there are R = 3 l  ( l=2  s-l) 
different configurations for s-layer sequences, where s 
is the Reichweite defined by Jagodzinski (1949a). We 
divide these R configurations into three groups, each 
consisting of l configurations, as follows (see Table 1). 
All l configurations from 1 to l belonging to the first 
group have an A layer at their terminal position. Sim- 
ilarly, those from l +  1 to 2l belonging to the second 

e = exp( + i2n/3) = - exp(~ irc/3) 
e + e * =  - 1 ,  e2=/3 *, /~*2=e and/~3.~/~.3= 1 

t (I-3) means equation (3) in part I (Kakinoki & Komura, 
1965). 

A C 2 3 - 1  
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group have a B layer and those from 2l+ 1 to 3l be- 
longing to the third group a C layer. Thus the matrix 

can be expressed in the form 

[M e*M eM~ 
~= | e M  M e*M / with ( M ) , j = I .  (4) 

\ e*M eM M !  

The configuration i+  l ( i= 1 , 2 , . . . ,  l) is obtained from 
the configuration i by the A B C  cyclic change and the 
configuration i + 2 l  from the configuration i +  l by the 
A B C  cyclic change. These three configurations, i, i + l  
and i +  2l, are said, for convenience, to belong to the 
f o r m  i. Some examples of the forms, with their nota- 
tion, are shown in Table 1. Considering that the exis- 
tence and continuing probabilities of configurations 
belonging to the same form should be the same, we 
can rewrite the matrices F and P as 

/woo\ io P, 
F=½ 10 W 0J and P =  /P2 0 Pa / , (5) 

\0 0 W/ \P1 P2 O/ 
where (W)ij = wi&j and wt/3  = f i  =fi+t =fi+2z 
( i= 1 , 2 , . . . ,  l). As a result, Tm in equation (2) can easily 
be reduced to 

Tm = spur H(eP1 + e'P2) m with H = MW (6) 

by mathematical induction, where the orders of the 
matrices H, M, W, P1 and Pz are all l. The relations 
spur H0= 1 and HoP=H0 in equation (1-12)]" become 

spur H = 1 and H(P1 + P2) = H .  (7) 

Now that we can reduce the orders of the matrices 
to be used in the calculation, we may apply the general 

I" H in equation (I-12) is expressed here as Ho in order to 
avoid confusion with H in equation (6), the order of matrix 
being 3l for H0 and l for H. 

method of solution introduced in part I to the present 
calculation. The whole procedure for the calculation 
including the reduction is, after all, summarized in the 
form of the following five steps: 

S t e p  1. Set P1 and P2 from the correct P. 
S t e p  2. Express the existence probability, w~, of the 

form i in terms of Pts by solving equation (7). 
S t e p  3. Calculate To = 1, T~ , . . . ,  Tz-1 by equation (6). 
S t e p  4. Expand the characteristic equation F ( x )  with 

respect to x 

F ( x )  = det(xl - ePa - e*Pz) ] 

t l (8) = • a n x  1-n = 0 with a0 = 1 " 
n = 0  

S t e p  5. Substitute Tm and an into 
l --1 

Do + Z" D~ exp(ip~0) + conj. 
D(9)= P=~ . . . . . . . . . .  

1 

Co + 2: Cv exp(ip~0) + conj. 
p = l  

where 
l --p 1-- 1 --p 

C~ = ~ ana*,+ v and D~o = S anEn+v  
n = 0  n = O  

with 
i 

E~= Z agT,_~ (q= 1,2,. . . , l-  1) (T-m= T,9 
n = 0  

1--1 1 

E o =  S a * T n - a  r • a n T z - n .  
n----0 n=l 

Here, 1 is a unit matrix of the order / ,  and the charac- 
teristic equation F ( x ) = 0  should be fulfilled for diag- 
onalization of the matrix (eP1 +e 'P2) .  The intensity 
equation and the other quantities in step 5 are given 
by equation (1-46) and equations from (I-41a) to 

Table 1. Con f igura t i ons  o f  s - layer  sequences  be long ing  to the  s a m e  f o r m  a n d  their  no ta t i on  

N O .  

t -  

of 1st group 
s l= 2 s-1 form R = 3l from 1 to l 

1 CA 
2 2 2 6 BA 

1 BCA 
3 4 2 12 A C A  

3 ABA 
4 CBA 

1 
2 
3 
4 4 8 5 
6 
7 
8 

The terms 

R configurations 
^ 

2nd group 3rd group 
f roml+l  to21 from2l+l  to3l 

A B  BC 
CB A C  

CAB A B C  
B A B  CBC 
BCB CA C 
A CB BA C 

B C A B  C A B C  
A CA B BA BC 
A B A B  B C B C  
CBA B A CBC 
A BCB BCA C 
CBCB A CA C 
CA CB A BA C 
BA CB CBA C 

24 

A B C A  
CBCA 
CA CA 
BA CA 
CABA 
B A B A  
BCBA 
A CBA 

positive and negative (Patterson & Kasper, 1959) are 

Notation of the form 
S positive pair 
G negative pair 

c = S S  positive cubic form 
h = GS positive hexagonal form 
h" = SG negative hexagonal form 
c" = GG negative cubic form 

cc = S S S  
he = GSS  
h'h = SGS  
c'h = GGS 
ch" = SSG 
hh" = GSG 
h'c' = SGG 
c'c" = GGG 

positive 4-layer form 

negative 4-layer form 

used according as the last pair is S or G. 
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(I-41d), with R and Bm replaced by l and Tm respec- 
tively. Explicit exl~ressions of C~, D~, Ee and D(fp) for 
l =  1, 2, 3 and 4 are listed below, and are obtained from 
equations (I-42a)-(I-44b) with R and Bm replaced by 
l and Tm respectively. 

Formula 1 (l=1) 
1 - a ~ a t  

D(~o) - 1 + a~a~ + at exp(i~o) + ai-exp(-  i~o) " 

Formula 2 ( l=2) 

Co = 1 + aaa~ + a2a~ CI = a~ + a~a~ C2 = a~ 
Do= 1 +a~a[-a2a~ +a[T~ +axT[ Dl=a t +a~Ta 

+ T t .  

Formula 3 (l=3) 

Co = 1 +mat +aza~ +a3a~ C1 =at +ala~ +aza*~ 
C~ = a~ + axa~ C3 = a~ 

f Eo= 1 -a3a~ +(at-a2a~)T~ +(a~-axa~)T2 

I El=a~+a~Tl+T~+a~Tz 

[ E2=a~ +a~Tx +a~T~ + T~ 

Do=Eo+aiE~+a2E2 D~=EI+a~E2 D2=E2.  

Formula 4 (l=4) 

Co = 1 + ala~ + a2a~ + a3a~ + a4ag 
C1 = a~ + ala~ + a2a~ + a3ag 
C2=a~ +ala~ +a2a$ C3=a~ +alag C4=ag 

[ Eo= 1-a4ag +(a~-a3ag)Ta +(a~-a2ag)T2 

+(a~-alag)T3 

Ex=a~ +a~T1 + T~ +a~T2+agT3 

E2=a~ +a~Tx +a[T t +agT2+ T~ 
$ * * ~s Ea=a~ +a,~Ta+a2 TI +a l  T2 + T~ 

Do= Eo + alE~ + aEEE + aaE3 Da = E~ + aIE2 + aEEa 

DE=E2+a~Ea Da=Ea. 

Appl ica t ion  to the cases  o f  various values  
o f  the R e i c h w e i t e  s.  

In this section, we show the practical procedure for 
obtaining the intensity equation and necessary quan- 
tities in the cases in which the Reichweite s =  1, 2, 3 

and 4. The results obtained by other researchers are 
also discussed. 

(i) s =  1 (Paterson) 
The continuing table for s =  1 is shown in Table 2. 

Such a table will be called hereafter a P-table or a 
complete P-table. Following the five steps and using 
formula 1 we obtain 

Step 1 : 

Step 2: 

Step 3: 

Step 4: 

P~ = ~ and P2 = 1 - ~ .  

w=l  . ' .  fA=fB=fC=½. 
(Ws=C~ and w e = l - c 0 .  

Tin= {ae+ ( 1 -  ~)e*} m . 

r ( x ) = x - { e e  +(1-e)e*}=O 
. ' .  aa= - {ae+(1-a )e*} .  

(9) 

Step 5 with formula 1: 

D±(~o) = 
3a(1 - a )  

2 -  3a(1 - =)-2~z cos(~0-T- 120°)-2(1 - ~ )  cos(q~ + 120 °) 

3a(l -~) (10) 
- 2 ± - 3 ~ ( ]  ±c0+cos  ~0 + ~/3(1-2c0 sin ~0 

Here, D+(~0) is the intensity distribution of X-ray dif- 
fuse scattering along the plus line, and D_(~0) that along 
the minus line. 

Equation (10) is the same as equation [7]t given by 
Paterson (1952). Regarding equation (9) and Tables 3 
and 4, refer to the next two paragraphs. 

(ii) s =2  (including Wilson' s case) 
The complete P-table for s = 2 is shown in Table 5. 

There are R = 3 x 2 s - a = 6  configurations. Three of 
them, i.e. CA, AB and BC, belong to form 1, i.e. the 
positive pair S as shown in Table 1, and the remaining 
three, i.e. BA, CB and AC, to the negative pair G. 
If, for example, AB (S) is followed by C with a prob- 
ability a, we get ABC, of which the last two layers are 
BC (S). On the other hand, if AB is followed by A 
with a probability 1 - c~, we get ABA, of which the last 

t The numbers of equations given by other authors are put 
in square brackets. 

Table 2. P-table for s = 1 (Paterson) 

A B C 
fA=~" A 0 ~ 1 --~ 
fn=~ B 1 --~ 0 
fc=] C ~ 1 -~  0 

Table 3. P1,2-table for s= 1 

s G 
ws =o~ S o~ 1 -~  
w a = l - o c  G ~. 1 -o~ 

W e  ~ O~ 2 C 

wn = a(1 - a) h 

Table 4. p-tables for s = 1 

c h '  

o~ 1 - o ~  we" =(1 - ~ ) 2  
o~ 1 - o~ wn" = o~(1 - oO 

c' h 
c' l - = a 

h' 1-oc = 

A C 2 3 -  1" 
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two  layers  a re  BA (G). I n  th is  s i t u a t i o n  S m a y  be  sa id  
to  be  f o l l o w e d  by  S wi th  a p r o b a b i l i t y  c~ a n d  by  G wi th  
a p r o b a b i l i t y  1 -  e. I n  th is  way,  t he  c o m p l e t e  P - t a b l e  
(Tab le  5) c an  be  s impl i f ied  as T a b l e  6, w h i c h  cor re -  
s p o n d s  to  the  s u m  o f  Px a n d  P2. Such a t ab l e  will  be  
ca l led  h e r e a f t e r  a P l , z - tab le  o r  a s impl i f ied  P1,2-table. 
F o l l o w i n g  the  five steps a n d  us ing  f o r m u l a  2, we  o b t a i n  

( 11 
S t e p l "  P I =  1 - c t '  a n d  P2 = ~' . 

( wo)( S t e p 2 :  ws 1 - ~  = w~ 
ws  wo 1 -~t '  ~t' \ w s  wG 

a n d  w s + w ~ = l  . 

F r o m  these  e q u a t i o n s ,  we h a v e  in  gene ra l  

( 1 - c t ) w s = ( 1 - c t ' ) w a  a n d  w s + w ~ =  1 . (11) 

So lv ing  these  e q u a t i o n s ,  we h a v e  

w s = ( 1 - c ~ ' ) / ( 2 - c ~ - c t ' )  a n d  

w a = ( 1  - ~ ) / ( 2 - ~ -  ~') (12) 

except  fo r  t he  case e = c~'= 1, for  w h i c h  we m a y  
a r b i t r a r i l y  c h o o s e  the  r a t i o  ws:wo .  

1 (1 
Step  3" T i n -  2 - e - e '  spu r  1 - e '  1 -  

x ( ~e (1 -- ~)e*~ ra 

(1--  a')e o~' e* fl 

• • T a = - ( 1 - t - ~ c * + ~ ' c ) / ( 2 - c ~ - ~ ' ) .  

x-o~e  - ( 1  **I Step 4:  F ( x ) =  = 
- ( 1 - ~ ' ) e  x -  ~'e* 

x 2 -  ( ~  + e ' e * ) x -  1 + ~ + ~' = 0 

• • a l = - ( ~ 8 + e ' e * )  a n d a z = - ( 1 - e - e ' ) .  

S tep  5 wi th  f o r m u l a  2" 

C 0 = 2 ( 1  - c~- c~'+ e z +  e'z) + e e  ' 

C1 = c~ + c~' + c~ '  + c~(2 - ~)~ + ct'(2 - ~t')e* 

C2-- - ( 1  - c~- ~') 

D o =  3(1 - c O O  - ~')(~ + ~ ' ) / ( 2 -  ~ -  c¢) D I = 0  

. ' .  D.((p) = 

3(1 - ~)(1 - ct')(c~ + c()/(2 - o~ - ~') 

( 2 ( 1 - ° : - ~ ' + ~ 2 + ° : 2 ) + ° ~ ° : + ( ° ~ + ° : ) 2 c ° s ~ °  ) "  

- 2(1 - ~ -  ~t') cos 29 T- I / 3 ( ~ -  c 4 ) ( 2 -  ~ -  ct') s in ~0 
(13) 

f c a  = ws/3 (S) 

fro4 = wG/3 (G) 

fan = WS/3 (S) 

fcB= w~/3 (G) 

fBc = ws/3 (S) 

fAC = We~3 (G) 

T a b l e  5. P-table f o r  s = 2 (including Wilson's case) 
A blank part means that the element is 0. 

C 
\ 

A 
/ 

B 

(s) (G) (S) (63 
C B A C 

\ /  \ /  
A B 

Gt 

1 - ct" 

A 1 - - c t  
\ 

B 
/ 

C og 

B ~ 1 - ~  
\ 

C 
/ 

A 1 - ~" ct" 

(s) (G) 
B A 

\ /  
C 

1 - -  o~ 

O~ t 

1 m ~P 

T a b l e  6. Px,2-tablefor s = 2  

s G 
ws = (1 - ct')/(2 - ct - ¢t') S ~ 1 - 
WG = (1 -- ~)/(2 -- ~ -- Ct') G 1 - ~' ~' 

We ~ O~WS 
wn = (1 - ~ ' ) w G  

T a b l e  7. p-tables fo r  s = 2 

c h" 

1 -- ~ we" = ~t'wa c" 
1 - ~ wh' = (1 -- cows h" 

h 
1 - -  o: 
1 - -  o: 
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When a ' =  1 - a  is substituted into equation (13), we 
get equation (10) corresponding to the case of Pater- 
son ( s=  1). In this case, equation (12) becomes equa- 
tion (9) and Table 6 becomes Table 3. Table 3 means 
that the probability of the positive continuation is equal 
to ~ irrespective of the kind of the foregoing pair, S 
or G. The situation is the same for the negative con- 
tinuation and hence the Reichweite s can be reduced 
from 2 to 1. 

When ~ ' =  c~, Table 6 becomes Table 8 and we have 

w s = w a = ½  for ~=c(4= 1 
w s + w ~ = l  for c~=c~'= 1 (14) 

and 

D+(~o) = D-(fp) = 

3 e ( 1 - a )  (15) 
4 -  8~ + 5~ 2 + 40c 2 cos ¢p - 4(1 - 2ct) cos2¢ ' 

which is the same as equation [14] given by Wilson 
(1942)'I". 

Thus, the case s - -2  includes the cases of Paterson 
and Wilson as special cases. Regarding Table 7, refer 
to the next paragraph. 

Table 8. P1,2-table for  s = 2 with ct = ~' (Wilson) 
s G 

ws=½ S ~ 1 - ~  
we=½ G 1 -o~ 

(iii) s = 3 (including Jagodzinskrs case) 

The complete P-table for s =  3 is shown in Table 9 
and the corresponding Pi,2-table is given by Table 10. 
There are R = 3 x 2  s-x=12 configurations and l =  
2 s-x = 4  forms which are c, h, h' and c' as shown in 
Table 1. In the present case, Table 10 is conveniently 
rewritten as Table 11. We call them hereafter the p- 
tables or the 'convenient p-tables'. The p-tables are in 
fact very convenient for examining what kind of regular 
structures can be derived for a given s. 

If  we put fl = ~ and fl' = a' in Table 11, we get Table 7 
(s=2)  and further, if we put a ' =  1 -  a in Table 7, we 
get Table 4 ( s=  1). 

If, from Table 11, we define 

(;00) Pc= ' P n =  1 - f l  ' 

• °o) (°o a' , 1 (16) 
Pc = , , Ph ' -  1- f l '  

( '  !t h =  a n d  = ,~ , (17)  
We Wl~ \Wc Wh/ 

then H, Px and P2 are expressed as 

I" Regarding the relation between the symbols used by 
Wilson and those used by the present author,  refer to Kakinoki  
& Komura  (1954a). 

( ~ h ' u )  p l =  ( p : ~ ) a n d  
H =  h'u ' \ u p  h 

(Oo (° l P2 = P,hU 1 with u = 
up, u /  1 " 

l) 
• "10 . 

l/2 

(18) 

Here, Pc and PC come from the left halves of p-tables 
and the suffix c means that the continuation is of cubic 
type. Similarly, ph and p;, come from the right halves 
of p-tables and the suffix h means that the continuation 
is of hexagonal type. Substitution of equation (18) into 
equations (6) and (7) gives 

(6) -+ Tin=spur h' (ep~ (19) 
\8Ph e'Pc] 

hpe + h'Ph = h 
(7) -+ h'PC + hpn = h' and spur(h + h ' )=  1. (20) 

As a result, the characteristic equation (8) becomes 

(8) ~ F ( x ) =  • , = 0 .  (21) 
- ePn x l -  e Pc 

Now, the five steps are as follows: 

Step 1: Equation (16). 

Step 2: Equation (20). These matrix relations corre- 
spond to the simultaneous equations 

{ w~ = w'n wc + wC + 2wh = 1 

f lwh=(1 -a )we  andfl 'wh=(1-c~')wC. (22) 

Solving these equations, we obtain 

w n = w ' n = ( 1 - ~ ) ( 1 - ~ ' ) / C  
w e = f l ( 1 - ~ ' ) / C  wC=fl ' (1-~) /C (23) 

where 

C = 2 ( 1 - o O ( 1 - a ' ) + f l ( 1 - o c ' ) + f l ' ( 1 - o O .  (24) 

Step 3 with equation (19): 

1 
Tm= -~- spur 

( f l ( 1 - £ )  (1-~x)(1-~x') fl'(1-o¢) ( 1 - e ) ( 1 - ~ x ' ) \  

fl(1-~') (1-~)(1-~') fl'(1-~) (1-~)(1-~')~ 
fl(1-~') (1-~)(1-~') fl'(1-~) (1-~)(1-~')] 
fl(1-~') (1-~)(1-~') fl'(1-~) (1-~)(1-~')/ 

0 0 (1-f l)e* 
x ( 1 - £ ) e  £e* 0 

(1 - fl')e fl'~* 0 . 
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. ' .  T: = - wn + wce + w'~e* T z =  T ?  + 3wn 

T 3 =  l -- 3 ( 1 - - f l e - - f l '  e*)wh . (25) 

Step 4 with equation (21): 

i x - o ~ e  0 0 

- f ie  x 0 
F ( x )  = 

0 - (1 - c~')c x -  ~'e* 

- ( 1  - cz)e* 

- ( 1  -fl),~* 

0 

0 - - ( 1 - f l ' ) e  --fl'e* x 

{ a : = -  (c~e + £ t * )  a z = o ~ ' - ( 1 - f l ) ( l - f l ' )  

a3=(1 - fl')(oc - fl )e +(1 - fl )( o¢' - ]3')~* 

a 4 =  - (o¢-  fl)(oc' - fl ') . 

= 0 .  (26) 

(27) 

Step 5 with formula 4:  

Co-- 1 + cg + c d z - ~ ' { 1 -  ~c~' + 2 ( 1 - f l ) ( 1 - f l ' ) )  

- (o¢-fl)(a' - f l ' ) (1  - f l ) (1  - f l ' )  

+ {(1 _fl)2 + (~_fl)2){(l _fl,)2 + (~,_ fl,)2} 

C 1 = - -  (C11e -~- C12/~* ) 

[ C,: = ~'(1 + c d ) -  ~(1 - f l ) (1  - f l '  + £ ( ~ ' - f l ' ) }  

+ (o¢'-fl')(1 -f l ' ){(1 _fl)z + (~_fl)z} 

Clz=(exchange ' in Ca:) 

h 

h" 

h 

h' 

h 

h' 

B 
\ 

C 

A / 
A 

A / 
\ /  

B 
/ 

C 

C 
\ 

A 

B 
B / /  

\ 
C 

/ 
A 

A \ 
B 

C 
C 

c / /  \ 
A / 

B 

Table 9. P - t a b l e  f o r  s = 3 ( inc luding  J a g o d z i n s k i ' s  case)  

c h h" c" c h h" c" 
B A A C C B B A 
\ /  \ /  \ , /  \ /  

C B A C 

\ \  / /  ~ / /  
A B 

B 

1 - f l "  

1 -  o~ 

1 - -  O~ t 

1-fl  

fl, 

1 - - f l '  

1 ~ O~ t 

1-fl 

fl, 

c h h" c" 
A C C B 

\ /  \ /  
B A 

C 
1 - ~  

1-B 

B' 

fl 

1- f l '  

Table 10. Pl , z - t ab l e  f o r  s = 3 

c h h' c' 
c oc 1 - ~  
h fl 1- f l  
h' 1 - B '  fl' 
c '  l - ~ '  od 

Table 11. p- tab les  f o r  s = 3 

c h" c" 
O~ 1 - -  O~ C" 0~" 

fl 1-13 h" f l" 

h 
] - o (  
1-13" 
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C2 = C20 _ (C21g _Jr. C22g, ) 

C2o-- { . . ' -  (1-f l ) (1-f l ' )}{  1 -  ( . - f l ) ( . '  -f l ' )} 

- . ( . - f l ) ( 1  - i f ) - . ' ( . '  -if)(1 -f l)  
Cz, = . '  ( .  - fl ) ( 1 -  fl') C22 = . ( . '  - f l ' ) (1-  fl ) 

C3 = C3:  + C3:* 

C31 = ( " ' - i f ) { 1  - f l + " ( " - f l ) }  

C32 = ( . - f l ) { 1 - f l '  + . ' ( . '  -f l ' )} 

c 4 =  - ( . - P ) ( . ' - P ' )  = - C 4 o  

Eo = 3 wn[fl' ( J + . '  -f l ' ){ 1 - f l ( . - f l )  
- . ' ( . -p)e} 

+fl(1 +.- f l ) {1 - f l ' ( . ' - f f )  
- " ( ¢ - P ' ) : } ]  

E,= -3w~[pp' +p{¢ +(.-p)(¢-p )}8 

+p'{. + (,~-p)(¢-P')}:] 
E 2 = E 3  = 0  

Do=3Wh[fl(1 + . - f l ) { 1  +( . ,_ i f )z}  
+ f r o  + . ' - f l ' ) { 1  +(.--fl)2}]--3whD'o 

D1 = - 3wn(D11e + Dlze*) 

D11=fl(.'-IY)(1 + . - f l )  
D12=fl'(~-fl)(1 +.'-- i f)  

{ X~p= 3fl(1 - , ) ( 1  +o~-fl)/{2(1-oO+fl} (29') 
Y~B. ±(~o) = 2[ 1 - fl (1 - ,)  + ( ,  - fl )2 

+ {. + ( . - f l ) (1  -f l )}  cos((p _+ 60 °) 

- . ( 1 - f l )  cos(~0-T- 60 °) 

- { 1 - f l + . ( . - f l ) }  cos 2~p 

- (~- f l )  cos(3fp + 60°)1. (29") 

In this case, since . ' = i f = 0 ,  then C = 2 - 2 e + f l  and 
we have 

w;=0, we=f l / (2 -2 .+ f l )  and 
w h = w ' n = ( 1 - . ) / ( 2 - 2 . + f l ) .  (30) 

Therefore we may put 

1 
Tin-  2 - 2 .  +fl spur 

1 f l ( 1 - . )  ( 1 - . )  0 ( 1 - ) e *  . 
fl ( 1 - . )  ( 1 - . )  

(31) 

The same result as equation (29) can be obtained by 
applying steps 3, 4 and 5, with formula 3, direct to 
equation (31). 

When fl= 0, the replacement 

. - +  . ' ,  fl ~ fl', + ~-T- and -T--+ + (32) 

D2 = D3 = 0 

. .  D±(~) = x±(e ) /Y±(e )  
can be made in the corresponding equations from (29) 

(28) to (30). 
In order to discuss the peak shift due to faults, as 

was found in practice in the case of fl' martensite of 
Cu3A1 (Nishiyama, Kakinoki & Kajiwara, 1965; Kaji- 
wara & Fujita, 1966 and Kajiwara, 1967), it is enough 
to study the derivative of Y=p.±(~0) with respect to ~0, 
because X~p in equation (29) does not include ~o. 

If we put . '  = .  and fl' =fl, we get 

we=w'~=fl /{2(1- .+f l )}  and 
w n = w ' n = ( 1 - . ) / { 2 ( 1 - . + f l ) }  (33) 

and the characteristic equation becomes 

F(x) = X 4 "l- "X 3 "[- ( .2__(1  -fl)Z}xZ 

- ( 1 - f l ) O x - f l ) x - ( . - f l ) 2 = O .  (34) 

Equation (34) is the same as the equation [10] given 
by Jagodzinski (1949b). The intensity equation then 

(29) becomes 

3fl(1 - . ) ( 1  +~-f l ){1  +(o~-/3)2+(.- f l )  cos rp}/(1- ~-l-fl) 

[ X+(~o) = 3wn{D o + 2D,1 cos(~0 -T- 60 0) 

+ 2D12 cosQp + 60 o)} (28') 

Y±(~0) = C0 + 2{Cn cos(~0-T- 60 °) 
+ 6'12 cos(q~ _ 60 o) 
~- C2o cos 2(o + C21 cos(2~0 T 60 o) 
"~- (722 cos(2~o + 60 o) 

- -  C31 cos(3~0 -T- 600) _ C32 cos(3fp + 60 o) 
--C40 cos  4~0}. (28") 

When i f = 0 ,  a factor {l + .'2 + 2. '  cos(~0 T- 60 °)}, 
which is the only factor including ~', appears in both 
the numerator and the denominator of D+(~0). As a 
result, they are cancelled out, and this amounts to 
putting . ' =  0. Thus we obtain 

D+((p) = D-(rp) = 
2 _  4fl_ 2.f l+ 7fl2 + (e_/~){(e_fl)(2e2 + 3fl2) + 2fl(e + 3fl)} ) 

+ 2{.(2fl + ~xz-,B2)+ (~x-fl)(1-f l)(1-2,8+ 2fl2- 2.fl)}cos rp 

+ 2[~2-(1-fl)2-(~x-fl){.2(o~-fl)+fl(1 -fl)(1 +~x-fl)}l cos 2rp 

• - -2( . - - f l ) (1- - f l+.2- - . f l )  cos 3~--2(.--f l)  2 cos 4fp (35) 
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Equation (35) becomes equation (15) (Wilson's case) 
when a=f l  (s= 2). 

(iv) s > 4 (including Jagodzinski's case) 

We obtain Tables 2, 5 and 9 for larger values of s, 
and in the same way we can obtain the complete P- 
table for any value of s. However, such a complete 
P-table becomes larger, and hence the use of p-tables, 
with equations (18)-(21), is more convenient for larger 
s. We therefore show here only how the p-tables will 
change as s increases. The p-tables for s = 4 are shown 
in Table 12. 

The characteristic equation in this case is given as 

F(x) = x s + al x7 + a2 x6 + a3 x5 + a4x 4 

+ asx 3 + a6x 2 + a7x + a8 = 0 (36) 

ax = - ( a e  + a' e*) 

a2 = a a ' -  (1-7)(1 -~/') 

a3 = {a(1--T)(1--~/')--T(1--fl)(1--6')}e 
+ {a'(1 --~/)(1 --~/') --7'(1 -- fl')(1 --6) }e* 

a4---- --act'(1 --T)(1 -- ~f) -- 66'(1 -- fl)(1 -- fl') 

+ aT'(1 -fl ')(1 - 6) + a'T(1 - f l ) ( 1 - 6 ' )  
+V ' (a ' - f l ' ) (1 -3 )e  +T(a- f l ) (1 -6 ' ) e*  (36') 

as-- (a-fl){66'(1 - f l ' ) -  c(y(1 - 6')}e 
+ (c ( -  fl'){66'(1 - fl) - a"/'(1 - 6)}e* 

a6 = (1 - f l  ) (1  - f l ' ) (V - 6 ) ( 7 ' -  6 ' )  - 8 8 ' ( a  - f l ) ( c (  - if) 

a7= - (~/- 6)(~/'- O'){(a-fl)(1 -fl ' )e 
+(¢-Y)(1-¢0~*} 

as=(a-,e)(¢-,e')('t-a)(v'-63. 
When all the primes are omitted, equation (36) is the 
same as the characteristic equation [36] given by Jagod- 
zinski (1954). 

D i s c u s s i o n  

In the method mentioned above, the characteristic 
equation, F(x )=  0, has l roots because the order of the 
matrices P1 and P2 is I. Hence we have at most l max- 
ima on the calculated intensity curve. Let M be the 
number of the observed peaks within a period in recip- 
rocal space corresponding to one layer thickness. Then 
we have the relation 

M < l =  2 s-1 , (37) 

which gives the minimum value of s to be considered. 
If the characteristic equation has a root Ixvl = 1, a 

Laue function of a form such as 

sinZ{N(rp- 6~)/2} 
cv sin2{(~o_ 6.)/2} 

must be added to ND~(~o), where 

l--I (l--l--m\ = 0  ) 
X X a n T t - l - m - n  x m 

m = O  
Cv ~ l - -1  . . . . . . . . . . . . . . . . . . .  

X ( l -  n)anx tq-n 
n = 0  

and 

(38) 

xv =exp(i6v). (39) 

In this case, a factor {1-cos(~0-6v) } appears in both 
the numerator and the denominator of D±(tp) and they 
are cancelled out. 

Substitution of equations (4) and (5) into equation 
(2) gives 

Tm=½spur eH H e*H P2 0 Pa • (40) 

e*H eH H /  P1 P2 0 

Since, as is readily proved by mathematical induction, 
pm takes the form 

p r o =  Y ~  X m  Y m  , 

Ym Ym Xm 

equation (40) becomes 

T m = P °  +eP + +e*P m (41) 
where 

p o  = spur HXm, P+  = spur HYm and 
P~  =spur  HY~.  (42) 

Here, po, p +  and Pm are respectively interpreted as 
the probabilities of finding the layer m to be the same 
as, one ahead of, and one behind the zero layer, in 
the ABC sequence. Using equation (41), we can express 
D-~(~) and D-(~p) as 

co 

D+(tp)= X T+e -~m¢ and 
! / I ~  - - o o  

oo 

D_(tp)= X T+*e -'mq' (43) 
m ~ - - c o  

where 

with 

+ - TI*  T - r , -  and T+=PO.,+eoP + +e~PT., (44) 

eo=exp(2~ri/3)=(- 1 + 1/30/2. 

From equation (43), we find that the relation 

D + ( -  (o) = D_(~o) (45) 

¢C 

hc 
h'h 
c'h 

CC 

O~ 

B 

Table 12. p-tables for  s = 4  (including Jagodzinski's case) 

hc hh" ch" 
1 - ct c ' c "  

1 - p  h'c" 
1 - 7  hh" 
1 - 6 ch" 

c'c" h'c' h'h c'h 
~" 1-~" 
fl" 1-f l" 

y" 1 - -  ~," 
6" 1--6" 
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holds in general. This equation means that the inten- 
sity distributions along the plus line and the minus line 
are mutually antisymmetric with respect to the points 
~0 = nzc. This is the case for equations (10), (13) and (28). 

On the other hand, when the condition 

P~ P,~---(I P°m)/2 o + = - -  (Pro q-Pro +P~n = 1) (46) 

is satisfied, the relation 

D +(~0) = D-(:p) = D+( - ~p) = D-( - :p) = 
o o  o o  

Z" s o -,m~= tsv0 j~ (47) ( - ~ e  m - ½)e ~r cos m~0 l , ~ ' z  m - -  ~-1 
m...-~ --~ m.-,-~ ~oo 

holds. This means that the intensity distributions along 
the plus line and the minus line are not only the same 
but also symmetric with respect to the points rp=nzc 
on each line. This is the case for equation (15) (Wilson) 
and (35) (Jagodzinski). In deriving these equations, we 
omitted all primes in Tables 5 and 9, and this omission 
leads to the result (0 11) 

Pz=UP~U with U =  ." (48) 

1 0 ~. 

Equation (48) means that Pz is obtained from Px by 
inversion with respect to the centre of the matrix. In 
this case, we can show that 

Y~n=UYmU (49) 

by mathematical induction (Kakinoki & Komura, 
1954a). Consequently, from equation (42) we can see 
that the equality (47) holds because the condition (46) 
has been satisfied. 

In order to analyse the mutually antisymmetric inten- 
sity distributions along the plus line and the minus line, 
we must distinguish quantities for a positive form, such 
as w~, ~t, fl . . . .  from those for the corresponding nega- 
tive form, such as w~, ~', f l ' , . . .  (Kakinoki & Komura, 
1954b). In fact, only by doing so could we analyse the 
pattern of fl' martensite of Cu3A1 by the use of equa- 
tion (28) (Nishiyama, Kakinoki & Kajiwara, 1965, 
Kajiwara & Fujita, 1966; Kajiwara, 1967). 

There have been published a number of calculations 
for various models such as double (extrinsic)-deforma- 
tion fault (Johnson, 1963), triple-deformation fault 

D e ( 0 ) -  3~'(1 - ~ ' )  
1 +~ '  

(Sato, 1966), single- and double-deformation faults 
(Warren, 1963), deformation and twin (growth) faults 
(Gevers, 1954; Warren, 1959). Although all these cases 
have so far been treated by the difference equation 
method, they can be treated more easily and less am- 
biguously by the present method if the P-table is cor- 
rectly set in each case as shown in the Appendix, except 
for the case of deformation and twin (growth) faults 
treated by Gevers and Warren, which involves some 
problems to be further discussed elsewhere. 

APPENDIX 
Calculations for various models proposed by other 

investigators and for related models 

Many calculations by the difference equation method, 
based on various models, have been reported. Here we 
show that the same results can be derived more easily 
and less ambiguously by the present method. In order 
to save the space, we show only important points of 
calculation without any detailed explanation. 

1 " (1) Double (extrinsic)-deformation fau l t  (Johnson, 1963) 

The complete P-table is shown in Table 13 and we 
have 

Step 1" P I =  (1 - ~' 0 ~) and P2 = (~ ; ' ) .  

Step 2: w= 1/(1 +c¢) and w'=c¢/(1 + ~ ' ) .  

Step 3" T i n -  l + e ' s p u r  l e '  e* 

. .  T l = { - 2 ~ ' + ( 1 - 3 c Q e } / ( l + c ( ) .  

[x-(1-~')c -~': [ 
Step 4" F ( x ) =  = 

8" x 
x 2 - (1 - ~')ex - ct'e = 0 

• ". a l = - ( 1 - a ' ) e  and a z = - a ' e .  

Step 5 with formula 2" 

C 0 = 2 ( 1 - a ' + a ' 2 )  Q = ( I - a ' ) ( a ' - e * )  C 2 = - a ' 8 "  
D0=6a'(1 -a ' ) / (1  +a ' )  DI= {3a'(1 -a ' ) / (1  +a')}e 

1 - cos(~ ~ 60 °) 
1 - ct' + ~,2 + (1 - ct'){~' cos ~o + cos(~0 + 60 °)} + ct' cos(2~0 + 60 °) " (50) 

Table 13. Complete  P-table f o r  the case o f  double (extrinsic)-deformation fau l t  (Johnson) 

A A' B B' C C' 
fa =w/3= 1/{3(1 +0g)} A 1 - ~ '  ~' 
fa '=w'[3=, ' /{3(1 +~')} A" 1 

f B = w]3 B o~" 1 -~"  
fB, = w'/3 B" 1 

f c  = w[3 C 1 - ct" ~t" 
re" = w'/3 C" 1 
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Equat ion (50) is the same as equation [37] given by 
Johnson. 

(2) Triple-deformation faul t  (Sato, 1966) 

The complete P-table is shown in Table 14 and we 
have 

Step 2" w = 1/(1 + 2c(') and w' -- w" = c~"/(1 + 2~") .  

1 
Step 3" Tin= 1+2c( '  spur 

• . T ~ = { ( 1 - e " ) e + 3 e " e * } / ( l + 2 o ( ' )  and 
T2= { -  3a"2 + (1 - 4a")e*}/(1 + 2a " ) .  

x -  (1 - ct")e - ~"e* 0 

Step 4: F(x) = 0 x - e* = 

- - e *  0 x 

X3--(1 -- 0(')ex2-- ~" = 0 

. ' .  a l =  - ( 1 - ~ " ) e  

Step 5 with formula 3: 

a 2 = 0  and a3 = - ~ " .  

Co =2(1 - ct"+ ~,,2) C~ = - (1 - ~")e* 

C2=ct" (1-c t" )e  C 3 = - a "  

Eo={1 + 2 ~ " -  (1 -o( '2 )e )E  ' E1 = ( - ~ "  + e - e * ) E '  

E2 = e*E' with E '  = 3~"(1 - c(')/(1 + 2~") 

Do = 3E' D~ = 2eE' and D2 = e*E' 

(3) Multiple-deformation faul t  
The calculation mentioned above can easily be ex- 

tended to a more general case. We show here only Pa 
and PE for g = 4 and 5 where g is the number  of the 
successive deformation faults• 

( 1-c~ 0 0 0 )  

0 0 0 0  
g = 4  P a =  0 0 0 0 P2--- 

0 0 0 0  

11 °°°!) 0 0 0 0  

g = 5 P~ = 0 0 0 0  P2 = 

0 0 0 0  

0 0 0 0 0  / 

0 ~ 0 0 )  

0 0 1 0  

0 0 0 1  

1 0 0 0  

0 1 0  

0 0 1  . 

0 0 0  

\ 1  0 0 0  0 / 

It is noticed that  there is such a root as Ixvl = 1 when 
g=3n.  

(4) Single and double-deformation faul ts  (Warren, 
1963) 

The complete P-table is shown in Table 15 and we 
have 

Step 2: w=  1/(1 +c~') and w '=~ ' / (1  + ~ ' ) .  
1 

Step 3 : T m -  1 + ~' spur 

7)" 
• • T 1 = - { ( c ~ + 2 ~ ' ) - ( 1 - 2 ~ - 3 c ( ) e } / ( 1  + ~ ' ) .  

6ct"(1 - ct") - c o s  ~0 . (51) D±(q0 = 
1 + 2 ~ "  1 -  2 ~ " ( 1 -  ~ " ) - 2 ~ " ( 1  + ~ " )  cos(~ + 60 °) +4~'%0s2(q,-¥__60 °) 

Equat ion (51) is the same as that  given by Sato. In 
the present case, one of roots of the characteristic equa- 
t ion is x l = e = e x p ( + i l 2 0  °) and, f rom equation (39) 
we have c l = ( 1 - f )  2 where f = 3 w ' = 3 ~ " / ( l + 2 c ( ' ) .  
Hence we must  add the Laue function 

sin2{N(~o ~ 120°)/2} 
Ls((o)=(1 _ f )2  sin2{(~°~ 120°)/2} 

to ND±(~o). In the present case, the factor { 1 -  cos(tp 
-T-120°)} appears in both the numera tor  and the de- 
nominator  of  D±(tp) and they are cancelled out. 

x -  (1 - c~- e ' ) e - e e *  - e ' e *  
Step 4: F(x) = - ~* x I = 

x z -  {(1 - ~ -  c~')t + c~e* } x - ~ ' e = 0  

. ' .  a 1 = - { ( 1 - e - c t ' ) 8 + e e * }  and a z = - e ' e .  

Step 5 with formula 2" 
Co= 2(1 -c~' +c(z) - 3~(1 - ~ -  ~') 

C~ = ~'(1 - e - c t ' ) +  c~(1-~') 
- { ( 1 - c ~ - c ( ) - e ( 1 - c ( ) } e *  C 2 = - c g e *  

Do = {2~' + ct(1 - c~')}D' Dx = c~'eD' with 
D' =3(1 - c t - c ( ) / ( 1  +ct') 

Table 14. Complete P- tab&for  the case o f  triple-deformation faul t  (Sato) 
A A" A" B B" B'" C 

1 - o~'" 

~tt 
1 

1 - c~" 

f.4 = w/3= l / {3(l + 2og') } ,4 
fa" = w'/3 = ct"/{3(1 + 2ct")} A' 
f.4,,=w"/3=o~"/{3(l + 2ct")} A'" 

fz, =w/3 a 
f~, = w'/3 B" 
fB,,=w"/3 B'" 

fc  =w/3 C 
fc" =w'/3 C" 
fc'" = w"/3 C'" 

1 

C, s C *1 

~ t t  

! 
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Table 15. Complete P-table for  the case o f  single- and double-deformation faults (Warren) 

A A" B B" C 
fa = w / 3 = 1 / ( 3 ( 1 + ~ ' ) }  A 
fa,=w'/3=~'/{3(1 +~')} A' 

C t 

1 - -  O~ - -  0~" ~ 0~" 

1 

fn = w/3 B ~ ~" 1 - ~ -  ~" 
fB, = w'/3 B" 1 

fc = w/3 c 1 - ~ -  ~." ~ ~.' 
re, = w'/3 c '  1 

Table 16. A part o f  the complete P-table for  the case o f  single-, double- and triple-deformation faults  

(A) B B '  B "  B " "  C C" C "  

A 1 - o~ -- 0~' -- ~ "  O~ 0~" 0~" 
A" 1 
A "  
A'" 1 

C'" 

2e' + c~(1 - ~') + 2cd cos(~p + 120 o) 
D+((p) = _3( 1 - ~ - c()--/. 2~-_-~;~-d;2) _ 3~(1 - c~ - c() + 2 {~'(1 - ~ - c() + ~(1 - ~')3 cos ~0 ~ . 

1 +~ '  l\ - 2{1  - c ~ - ~ ' - ~ ( 1  - c ( )}  cos(~p-T- 120° ) -2~  ' cos(2~0-T- 120 °) ) (52) 

Equation (52) is easily verified to be the same as War- 
ren's result. This equation becomes equation (50) 
(Johnson) for e = 0  and also equation (10) (Paterson) 
if c~' is put equal to 0 and e is replaced by 1 -  e. 

(5) Combination o f  different kinds o f  faults 

Table 16 shows a part of the P-table in the ease 
where single-, double- and triple-deformation faults 
coexist. 

Table 17 shows the Pl,z-table in the case where the 
case s = 2 ,  and single- and double-deformation faults 
coexist. We can similarly treat any combination of 
different kinds of fault when desired. 

Table 17. Px,z-table for  the case where s = 2 ,  
and single- and double-deformation faults coexist 

S G G' 
S 1 -- ~ -- ~' ~ ~' 
G 1 --fl-fl" fl fl' 
G" 1 
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