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Diffraction by a One-Dimensionally Disordered Crystal. II. Close-Packed Structures.
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Kakinoki & Komura’s general theory on the intensity of X-ray diffuse scattering by one-dimensionally
disordered crystals is applied to stacking faults occurring in close-packed structures. Practical examples
are shown for the cases of s (Reichweite)=1, 2, 3 and 4, which cover the results given by Paterson,
Wilson and Jagodzinski. The cases of double (extrinsic)-deformation fault (Johnson), triple-deforma-
tion fault (Sato), multiple-deformation fault, single and double-deformation faults (Warren) and com-
binations of different kinds of faults are also dealt with by applying the general method without using

difference equations.

Introduction

The general theory given in part I (Kakinoki & Ko-
mura, 1965) showed that the X-ray intensities of diffuse
scattering from one-dimensionally disordered crystals
can be calculated straightforwardly if a table of con-
tinuing probabilities for successive layers in each struc-
ture is correctly given. In this calculation, it is not
necessary to follow a laborious procedure dealing with
difference equations.

One of the important examples of one-dimensionally
disordered crystals concerns displacement stacking
faults, in particular the stacking faults occurring in
cubic and hexagonal close-packed structures. The pre-
sent paper shows the practical procedure for applying
the general theory to these structures. The results so
far obtained by many researchers are also discussed
from the viewpoint of the new method.

General method of solution

In close-packed structures, there are three kinds of
layer, A, B and C, for which the layer form factors
can be expressed respectively as

VazV, Ve=Vee* and Ve=Vie
with e=exp{2ni(h—k)/3} .

When h—k=3n(n=0,+1,+2,...), we have e=1 and
hence V4= Vp=V¢. As a result, the well-known inten-

sity formula
VoVa sin2(Ne/2)/sinX(p/2)

is at once derived independently of the kind of fault.
Here, N is the number of layers, and p=2xn{, { being
the continuous variable along a line parallel to c*;
c* is the axis reciprocal to ¢ of the real crystal.

We treat hereafter only the cases in which A—k=
3n+1. Therefore, we have

e=exp(+i2n/3)=—exp(Fin/3)
e+e*=—1, e2=¢*, ¢*2=¢ and 3=¢*3=1
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where the upper sign in + or F corresponds to the
case h—k=3n+1 and the lower to the case h—k=
3n—1. These two cases correspond to two kinds of
line parallel to ¢* in reciprocal space. For convenience,
the line corresponding to A—k=3n+1 is called the
plus line and that corresponding to A—k=3n—1 the
minus line.

The intensity equation in the case of displacement
stacking faults is given by equation (I-3)t i.e.

In(p)=VoVsl(p)=

N=1
VoVe{N+ X (N—m)Tpe~ ™ +conj.} (1)
m=1

with

Tm=spur eFP™ and T,=1 2

where conj. means the complex conjugate of the fore-
going term and

(e)e=ee] and (F)y=/fidy (eF)=fieie]
(P)yy=Py . ©)]

The parameter ¢ is the phase factor due to the dis-
placement, parallel to the layer, of the origin of the
layer i, and, in the present case,

ea=1, egp=¢* and ec=¢;

fi is the existence probability of the layer i, and Py
the continuing probability of the layer j to the layer i,
dy being Kronecker’s delta.

Since a layer cannot follow a layer of the same kind
in a close-packed structure, there are R=3/ (/=25"1)
different configurations for s-layer sequences, where s
is the Reichweite defined by Jagodzinski (1949a). We
divide these R configurations into three groups, each
consisting of / configurations, as follows (see Table 1).
All / configurations from 1 to / belonging to the first
group have an A layer at their terminal position. Sim-
ilarly, those from /+1 to 2/ belonging to the second

+ (I-3) means equation (3) in part I (Kakinoki & Komura,
1965).



876

group have a B layer and those from 2/+1 to 3/ be-
longing to the third group a C layer. Thus the matrix
€ can be expressed in the form

M &M eéM
eM M M
&M M M

£= with (M)y=1. 4

The configuration i+/ (i=1,2,...,]) is obtained from
the configuration i by the 4BC cyclic change and the
configuration i+ 2/ from the configuration i/ by the
ABC cyclic change. These three configurations, i, i+/
and i+2/, are said, for convenience, to belong to the
form i. Some examples of the forms, with their nota-
tion, are shown in Table 1. Considering that the exis-
tence and continuing probabilities of configurations
belonging to the same form should be the same, we
can rewrite the matrices F and P as

W00 0P P,
F=1|{OWO)] and P=|P, O P;|, (5
00W P, P, 0

where (W)ij = wiéij and Wi/3 =fi =f£+z =ﬁ+zz
(i=1,2,...,1). As aresult, T in equation (2) can easily
be reduced to

Tm=spur H(eP, + ¢*P,)™ with H=MW 6)

by mathematical induction, where the orders of the
matrices H, M, W, P, and P, are all /. The relations
spur Ho=1 and HoP=H, in equation (I-12)} become

spur H=1 and H(P,+P,)=H. a

Now that we can reduce the orders of the matrices
to be used in the calculation, we may apply the general

+ H in equation (I-12) is expressed here as Hp in order to
avoid confusion with H in equation (6), the order of matrix
being 3/ for Hy and / for H.

DIFFRACTION BY A ONE-DIMENSIONALLY DISORDERED CRYSTAL. II.

method of solution introduced in part I to the present
calculation. The whole procedure for the calculation
including the reduction is, after all, summarized in the
form of the following five steps:

Step 1.
Step 2.

Set P; and P, from the correct P.

Express the existence probability, w;, of the
form 7 in terms of Pj; by solving equation (7).
Calculate Ty=1, Ty,...,Ti—; by equation (6).
Expand the characteristic equation F(x) with
respect to x

F(x)=det(x1 —eP; —¢&*P,)

Step 3.
Step 4.

®

1
= X apx!=?=0 with gy=1
n=0

Step 5. Substitute Ty, and a, into

-1
Do+ X2 Dy exp(ipp)+ conj.
D(¢)= - .p'_—ll_ - .
Co+ 2 Cpexp(ipg)+conj.

p=1

where

I-p I—1—p
Cp= Z ana:_i_p and Dp= Z anEn+p
0

n=0 n=

with
!
Ei= X axTu—q (9=1,2,...,1=1) (T-n=TY)
n=0

-1 1
Eo= X a,’an—a;‘ P anT[—n.
n=0 n=1
Here, 1 is a unit matrix of the order /, and the charac-
teristic equation F(x)=0 should be fulfilled for diag-
onalization of the matrix (¢P;+¢*P,). The intensity
equation and the other quantities in step 5 are given
by equation (I-46) and equations from (I-4la) to

Table 1. Configurations of s-layer sequences belonging to the same form and their notation

No. R configurations
of 1st group 2nd group 3rd group o
s =251 form R=3/ from 1to/ from /+1 to 2/ from 2/+1 to 3/ Notation of the form
2 2 1 6 CA AB BC S positive pair
2 BA CB AC G negative pair
1 BCA CAB ABC c =8S positive cubic form
3 4 2 12 ACA BAB CBC h =GS positive hexagonal form
3 ABA BCB CAC h =SG negative hexagonal form
4 CBA ACB BAC ¢ =GG negative cubic form
1 ABCA BCAB CABC cc =SSS
2 CBCA ACAB BABC hc =GSS | positive 4-layer form
3 CACA ABAB BCBC hh=SGS
4 8 4 24 BACA CBAB ACBC ch =GGS
5 CABA ABCB BCAC ch’ =SSG
6 BABA CBCB ACAC hh' =GSG | negative 4-layer form
7 BCBA CACB ABAC W' =SGG
8 ACBA BACB CBAC cc’=GGG

The terms positive and negative (Patterson & Kasper,

1959) are used according as the last pair is S or G.
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(I-41d), with R and By replaced by / and Ty, respec-
tively. Explicit expressions of Cp, Dy, Eq and D(p) for
I=1, 2, 3 and 4 are listed below, and are obtained from
equations (I-42a)-(I-44b) with R and By replaced by
[/ and Ty, respectively.

Formula 1 (I=1)

1 —aia
D(p)=" o

1+ayaf +ay exp(ip) +ay exp(—ip) °
Formula 2 (I=2)
Co=1+4+aaf +axa¥ Ci=a} +ajay Cy=a3
Dy=1+aaf—aaz+atTy+a,T{ Dy=at+a3T,
+TF.
Formula 3 (I=3)
Co=14+amat +aas +azay C,
Cy=at+ajat C;=
[ Ey=1—aat+(af —aap) T+ (a5 —aya$)T>
E=at+a3T1+T§+aiT,
E,=a3+a3T\+afT¥+T}%
Dy=Ey+a,E\+aE, Dy=FE\+a,E, D,=F, .

=ayf +aaf +a,a%

Formula 4 (I=4)

Co=1+aiaf +aa% + aza} +asas

Ci=af +aia3 +axaf +aza;

Co=a3 +ajaf +axa} Cy=aj+aaf Co=a}

[ Eg=1—asaf+(at —a;af)T1+ (a3 —aa5)T2
+(af —a1a$)T;

Ei=af+azT1+Tt+aiTo+a}Ts
Ey=a5+afT\+a}T}+a;T,+ T3
Es=a}+a;T\+ajTt+atT3+ T3

Dy=Ey+a E\+aE,+a;Es Dy=E | +a, >+ aEs

Dy=E,+a\F; D;=E;.

Application to the cases of various values
of the Reichweite s.

In this section, we show the practical procedure for
obtaining the intensity equation and necessary quan-
tities in the cases in which the Reichweite s=1, 2, 3

Table 2. P-table for s=1 (Paterson)

A B c
fa=% A 0 o 1—a
fe=% B 1—«a 0 o
fe=% C « I—a 0

877

and 4. The results obtained by other researchers are
also discussed.

() s=1 (Paterson)

The continuing table for s=1 is shown in Table 2.
Such a table will be called hereafter a P-table or a
complete P-table. Following the five steps and using
formula 1 we obtain
Step 1: Py=a and P,=1-—«a

Step 2: w=1 fa=fe=fc=%.
(ws=a and wg=1-—0a). C))

Tm={oe+ (1 —a)e*}m.

F(x) x—{oe+(1—a)e*}=0
a,=—{oae+(1—oa)e*}.

Step 3:
Step 4:

Step 5 with formula 1:

Di(p)=
3a(l —a)
2—3a(1 —a)—2a cos(p F 120°)— 2(1 —a) cos(p + 120°)
3a(1 —a)

(10)

T 2-3x(1—a)+cos g% 3(1—2a) sin ¢ °

Here, D.(p) is the intensity distribution of X-ray dif-
fuse scattering along the plus line, and D_(p) that along
the minus line,

Equation (10) is the same as equation [7]1 given by
Paterson (1952). Regarding equation (9) and Tables 3
and 4, refer to the next two paragraphs.

(ii) s=2 (including Wilson’s case)

The complete P-table for s=2 is shown in Table 5.
There are R=3x25"1=6 configurations. Three of
them, i.e. CA, AB and BC, belong to form 1, i.e. the
positive pair S as shown in Table 1, and the remaining
three, i.e. BA, CB and AC, to the negative pair G.
If, for example, AB (S) is followed by C with a prob-
ability o, we get ABC, of which the last two layers are
BC (S). On the other hand, if 4B is followed by A4
with a probability 1 —a, we get ABA, of which the last

1 The numbers of equations given by other authors are put
in square brackets.

Table 3. P, ,-table for s=1

Table 4. p-tables for s=1

c K
we =02 c o 1—a
wr=a(l —oa) h o 1—o

AC23-1*

S G
ws=o S o 1—a
weg=1—a G o 11—«
c h
we =(1—a)? ¢ 11—« o
wr'=o(l —a) 14 11—« o
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to be followed by S with a probability « and by G with Step 3: Tm= D _a—o SPUr
a probability 1 —a. In this way, the complete P-table

(Table 5) can be simplified as Table 6, which corre- « ae  (1—o)e*\™
sponds to the sum of P; and P,. Such a table will be (1-a)e  a'e*
called hereafter a P, ,-table or a simplified P, ,-table.

two layers are BA (G). In this situation S may be said 1 ( 1—o l—oc)

l1—a' 1—a

Following the five steps and using formula 2, we obtain oo Ti=—(t+ee*+ae)/2—a—a).
x—oe —(1—o)e*
« O 01—« Step 4: F(x)= , =
Step 1: P;= ) ' o and P,= 0o ) —(1—ae x—a'e
* * x2—(oe+o'e¥)x—1+a+a'=0
Step 2: (WSWG) ( * , 1—-Ia) = (ws WG) o= —(eeta'e*)and gy =—(1—a—a) .
ws wa 1—-o « Ws wWg

Step 5 with formula 2:
Co=2(1—o—a'+a2+a'2)+ax’

and ws+wg=1.

From these equations, we have in general Ci=a+a' +oao’ +a2—a)e+a'(2—a')e*
(I-aws=(1—a)wg and ws+we=1. (11) C=—(N—-a—a)
Solving these equations, we have Do=3(1 - o)(1 ') +a)/2—a =) Dy =0
ws=(1-a')/(2—a—a’) and - Dalo)= , ,
WG=(1—OC)/(2-(X"‘(X’) (12) 3(1—(17)(]—0()(0(+0C)/(2—(X—(X')

2(1—a—o' +o2+a'2) +aa’ + (x+a’)2 cos ¢ )
except for the case a=a'=1, for which we may —2(1—a—a)cos2pF J3(x—a Y2 —a—a') sin ¢
arbitrarily choose the ratio ws:we. (13)

Table 5. P-table for s=2 (including Wilson’s case)
A blank part means that the element is 0.

(S) G) (S) G) (S) (&)
C B A C B A
AN A4 N/
A B C
fca=ws/3 ) C P 1—o
AN
/A
fea=wg/3 (9] B 1—o o
fap=ws/3 ) A l1—a o
AN
B
/
fer=we/3 G) C o 1—o
fre=ws/3 ) B o 1—o
AN
/C
fac=wae/3 (G) 4 1—o %

Table 6. P, ,-table for s=2

S G
ws=(1—-a)/2—o—a’) S o 1—a
we=(1—a)/2—a—0a’) G 1—o o

Table 7. p-tables for s=2
c K ¢
We =0Ws c o 1—a w =a'wg c
wr=(1—-a"Ywe h o 1—a wr'=(1—a)ws 14 o 1—o

R
—_
|
R

~
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When o =1—a is substituted into equation (13), we
get equation (10) corresponding to the case of Pater-
son (s=1). In this case, equation (12) becomes equa-
tion (9) and Table 6 becomes Table 3. Table 3 means
that the probability of the positive continuation is equal
to « irrespective of the kind of the foregoing pair, S
or G. The situation is the same for the negative con-
tinuation and hence the Reichweite s can be reduced
from 2 to 1.

When o =a, Table 6 becomes Table 8 and we have

ws=wg=1% for a=a'=+1
ws+wg=1 for a=a'=1 (14)
and

D(p)=D-(p)=

3a(l —a) 15)
4—8a+ 502 + 402 cos p—4(1 —2a) cos?p’ (

which is the same as equation [14] given by Wilson
(1942)7.

Thus, the case s=2 includes the cases of Paterson
and Wilson as special cases. Regarding Table 7, refer
to the next paragraph.

Table 8. P, ,-table for s=2 with a=a' (Wilson)

S G
ws=1% S o 1—oa
we=% G 1—«a o

(iii) s=3 (including Jagodzinski’s case)

The complete P-table for s=3 is shown in Table 9
and the corresponding Py ,-table is given by Table 10.
There are R=3x25-1=12 configurations and /=
25-1=4 forms which are ¢, 4, A/ and ¢’ as shown in
Table 1. In the present case, Table 10 is conveniently
rewritten as Table 11. We call them hereafter the p-
tables or the ‘convenient p-tables’. The p-tables are in
fact very convenient for examining what kind of regular
structures can be derived for a given s.

If we put f=a and B’ =<’ in Table 11, we get Table 7
(s=2) and further, if we put o’=1—a in Table 7, we
get Table 4 (s=1).

If, from Table 11, we define

a0 0 1—o
Pe= (/m)’ = (0 1—/3)’
a0\, (01—
b= (ﬁ, 0) b= (O - ﬁ,) 16)

’ ’
We Wi W, Wy

h= ( ) and h'= ( “ M,
We Wi W, wy

then H, P, and P, are expressed as

a7

+ Regarding the relation between the symbols used by
Wilson and those used by the present author, refer to Kakinoki
& Komura (1954a).
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hhk 0
H=( " ,P1=(pf and
hh'u up, 0
0 1
A !
P,= ( , )w1th u= (18)
0 p.u 1
1 0/ 2

Here, p. and p, come from the left halves of p-tables
and the suffix ¢ means that the continuation is of cubic
type. Similarly, ps and p; come from the right halves
of p-tables and the suffix 4 means that the continuation
is of hexagonal type. Substitution of equation (18) into
equations (6) and (7) gives

h b *pr\ ™
6) — Tm=spur( ) spf ¢ p’f
h b’/ \ep, &*p.
hp. + h'pj=h
(M- | P TP
h'p; + hpr=h

(19)

and spur(h+h)=1. (20)

As a result, the characteristic equation (8) becomes

(8)— F(x)= X=epe —&"mn |, Q1)

—ep, x1—c*p,
Now, the five steps are as follows:
Step 1: Equation (16).
Step 2: Equation (20). These matrix relations corre-
spond to the simultaneous equations
Wh=Wy  Wetw.+2wp=1
Pwr=(1—a)we and f'wp=(1—a")w, .
Solving these equations, we obtain

wr=wp=(1—a)(1—0a")/C
we=pB(1—a)/C w,=f(1-x)/C (23)

22

where
C=2(1-a)(1—a)+p(l—a)+f(1—a). (24)

Step 3 with equation (19):

1
Tm= Espur

B —a) (1—a)(l—a’) f(1—) (1—a)(1—)
Bl—a) (1=a)(1—a) f'(1—a) (1—a)(1~0)
B —a) (1—a)(l—a) f(l—) 1—0)(1-a)
B—a) A=a)(1—a’) f(1—0) (1—0)(1—a)

oE 0 0 (I—a)e*\ ™

Be O 0 (1-p)e*

0 (1—-a)e o'e* 0

0 (1-p f'e* 0
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Ti=—wp+we+we* To=TF+3wy Step 5 with formula 4:
T:=1-3(1-Fe—B'e*)w,. (25
3 ( B ﬁ ) h ( ) C0=l+oc2+a’2—aoc'{l—occx'+2(1—ﬂ)(l _ﬁl)}
Step 4 with equation (21): —(a=B)& = B)1—B)1— )
X —oE 0 0 —-(1—o)*

—pe x 0 —(1-p)* H{A=BP+—BPHU B P+ =B}

FG) = 0 —(1—a)e x—o'e* 0 =0.(9)

Ci=—(Cpe+ Cr2e%)
0 —(I—f) —pfet N 1 (Cn 1

a= —(oc8+oc'8*) a2=otot'—(1 _ﬁ)(l _ﬂl) Cll =a,(1 +ot2)—ot(l —ﬁ){l —ﬁ'-{-oc'(oc' —ﬁl)}
ay=(1—B)o—Be+(1—B)e’ —B)e* @7 + (@' =)A= =B+ («—p)}
ay=—(a—p) ' =" . Ci;=(exchange ' in Cy)

Table 9. P-table for s=3 (including Jagodzinski’s case)

c h K ¢ c h K ¢ c h K c
B A A C C B B A A Cc C B
N/ A4 AN A4 AN N/
C\ /B A /C B /A
N \ / \ /
A B C
c B 3 11—«
AN
C
h A/ \\ B 1-8
A
h / 1-p i
ANV
B
/
¢ C 1—o o
c C 11—« a
AN
A
h B/ \\ 1-8 B
B
4 B yd B’ 1-p
N/
o
7
¢ A4 o 11—«
c A o« -«
AN
B
/
h C B 1-5
C
14 /
A4 1-8 B’
A
/
¢ B l—oa o
Table 10. Py ,~table for s=3 Table 11. p-tables for s=3
c h h ¢ c K ¢ h
o 1—« c o 11—« ¢ o 1—o
B 1-8 h B 1-8 4 i 1-p’

1-p B

1—o o

o a0

~
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Cr=Cy—(Cpue+ Cpe™®)

Caoo= oo’ = (1= B)(1 = BYH{1 — (a—B) (o' = B")}

—a(a—BY1=p)—a'(¢' = )1—f)
Cu=a'(a—p)1-B) Cor=alo'~p)1-p)
C3=Cyre+ Cae*
{ Car=('—B){1 - +a(a—p)}
Ca=(a—BNH1 - +o'(e' =B}
Co=—(@=p)'~F)=~Cs
Eo=3wn[ (1 +a'—B){1-B(a—P)
—o'(a—pB)e}
+p(1+a—B){1-B' (' ~p)
—a(e’ —f)e*}]
Ey= —=3wa[ '+ B{o +(a—B) (' —B")}e
+B'{a+(@—B)e’ —f)}e*]
| E;=E3=0
Dy=3wil (1-+a—F){1 + @' — )7}
+B (1 +a' ~B) 1+ (@)} =3wnD,
D1 = — 3W};,(.D118+ D128*)
{Du =B —B)1+a—p)
Dyp=f'(a—p)(1+a'—f)
D2= D3 =0
D(p)=X(9)/ Y=(p)

X+(p)=3wn{Dy+2Dy; cos(p F60°)
+2D); cos(p +60°)}
Ya(p)=Co+2{C}; cos(pF60°)
+ Cy, cos(p £ 60°)
+ Cyg cos 29+ Cy; cos(2p F60°)
+ Cy cos(2¢p + 60°)
— C3;c08(3¢ F60°) — Cszcos(3¢ +60°)
—Cyo cos 4¢} . (28"

(28)

(28")

When p'=0, a factor {l+a'2+2a’ cos(pF60°)},
which is the only factor including «’, appears in both
the numerator and the denominator of Di(¢). As a
result, they are cancelled out, and this amounts to
putting o' =0. Thus we obtain

D of, Hp)=X aﬁ/ Yuﬁ,i (») (29)

{Xaﬂ=3ﬂ(1~a)(1+“_ﬂ)/{2(l_a)+ﬁ} (29/)

Y5 +(0)=2[1-p(1—0)+(a—B)?
+{a+(@—p)(1—B)} cos(p £ 60°)
—o(1—p) cos(pF60°)
—{1—B+a(x—p)} cos 2¢

—(@—p) cos(3p £60°)] . (29")

In this case, since a’=p'=0, then C=2—2a+f and
we have

w,=0, we=p/(2—2a+f) and

wr=wi=(1—-a)/2—-20+F). (30)
Therefore we may put
Tm= TZIaT/f spur
B(—0) (1—a) soe0 (1—oa)e*\ ™
(ﬂ(1~a) (1—a)) (ﬂe 0 (1—/3)3*) N E2Y)
f—-a) (1—a)/ \O ¢ 0

The same result as equation (29) can be obtained by
applying steps 3, 4 and 5, with formula 3, direct to
equation (31).

When f=0, the replacement

oo, f—>f, +—Fand F - + (32)
can be made in the corresponding equations from (29)
to (30).

In order to discuss the peak shift due to faults, as
was found in practice in the case of ' martensite of
Cu;Al (Nishiyama, Kakinoki & Kajiwara, 1965; Kaji-
wara & Fujita, 1966 and Kajiwara, 1967), it is enough
to study the derivative of Y,;.(p) with respect to ¢,
because X,; in equation (29) does not include ¢.

If we put o' =« and f'=p, we get

we=w,=p/{2(1—a+f)} and
wr=w;=(1-0)/{2(1-a+B)} (33)
and the characteristic equation becomes
F(x)=x4+ax3+ {2 —(1—p)2}x2
—(1-p)@—p)x—(@—f)=0.

Equation (34) is the same as the equation [10] given
by Jagodzinski (19496). The intensity equation then
becomes

(34)

3(1 —a)(1 +a—B){1 + (@ —B)*+ (2 — ) cos ¢}/(1 -0+ )

D(p)=DAp)=

2= 4820+ 7p+ (= P){@— )22+ 35D+ 26(a+3p)}

+2{a2B+ 02— B2+ (a— B)(1 — B)(1 —2B+252 — 2a) }cos ¢
+2[02— (1- B2 — (= B){o*(a— B) +B(1 = f)(1 +a—B)}] cos 2¢

—2(e—B)Y(1—pB+a2—af) cos 3¢ —2(x—f)? cos 4¢

(35)
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Equation (35) becomes equation (15) (Wilson’s case)
when a=p (s=2).

(iv) s>4 (including Jagodzinski’s case)

We obtain Tables 2, 5 and 9 for larger values of s,
and in the same way we can obtain the complete P-
table for any value of s. However, such a complete
P-table becomes larger, and hence the use of p-tables,
with equations (18)—(21), is more convenient for larger
s. We therefore show here only how the p-tables will
change as s increases. The p-tables for s=4 are shown
in Table 12.

The characteristic equation in this case is given as

F(x)=x84 a1 X7+ ax6 + a; x5+ asx*
+asx3+asx+a:x+az3=0 (36)
ay=—(ae+a'e¥)
ay=aa’—(1-7)(1-7)
ay={a(1 =y)(1=7")—y(1-f)(1-0")}e
' A=A =)=y (1 =p)(1-3)}e*
ay=—oa'(1-y)(1-y)—=36d"(1-p)(1 - )
+ay'(1-p)1-8)+a"y(1-B)(1—7")
+7'(@ =) 1= d)e+y(a—p)(1—")e*
as=(a—pB){65'(1 - B)—a'y(1—-38")}e
+(@ =B 00" (1-B)—ay'(1-d)}e*
as=(1-p)1 =)y — )" ~ ")~ 65" (a— )’ ~ )
ar=—@—0)(y' — ") {(a—p)1-p)e
+ (@' =B)(1—p)e*}
ag=(a—p) ' —fYy—0)' =75 .
When all the primes are omitted, equation (36) is the

same as the characteristic equation [36] given by Jagod-
zinski (1954).

(36)

Discussion

In the method mentioned above, the characteristic
equation, F(x)=0, has / roots because the order of the
matrices P, and P, is /. Hence we have at most / max-
ima on the calculated intensity curve. Let M be the
number of the observed peaks within a period in recip-
rocal space corresponding to one layer thickness. Then
we have the relation

M<l=25"1, 37

which gives the minimum value of s to be considered.
If the characteristic equation has a root |x,|=1, a
Laue function of a form such as

DIFFRACTION BY A ONE-DIMENSIONALLY DISORDERED CRYSTAL. II.

sin{N(p—J,)/2}

e 38
“ sinx{(p=5,)/2) %)
must be added to ND.(p), where
I-1 JI—1-m
P ( P anT[—l—m—n)xT
_ m=0\ n=0
€= T e
E (I-n)apx}in
n=0
and x,=exp(i,). (39)

In this case, a factor {1 —cos(¢p—d,)} appears in both
the numerator and the denominator of D.(¢) and they
are cancelled out.

Substitution of equations (4) and (5) into equation
(2) gives

HeH ¢H\ /0 P, P\ ™
Tm=%spur| eH H ¢&H||P, 0 P, (40)
e*H &H H 1 Pz 0

Since, as is readily proved by mathematical induction,
Pm takes the form

Xm Yn Y,
Yn Y, Xn
equation (40) becomes
Tm=P%+eP)+e*P,, (41)
where
PY=spur HXy, P;; =spur HY,, and
P, =spur HY,,. (42)

Here, P%, P} and P, are respectively interpreted as
the probabilities of finding the layer m to be the same
as, one ahead of, and one behind the zero layer, in
the ABC sequence. Using equation (41), we can express
D.(p) and D—(p) as

=]

Dyp)= X Tje ™ and
m=-—oo
D_(p)= X Tj¥e—me (43)
where
Tt,=Tj *and T =PY+ePt+eyP,; (44)
with
go=exp(2ni/3)=(—1+)3i)/2.
From equation (43), we find that the relation
D(—9)=D—(9) (45)

Table 12. p-tables for s=4 (including Jagodzinski’s case)

cc he hh' ch’
cc o 1—a
he B 1-5
Kh y 1—y
c’h S 1-6

c’c he hh c’h
c’c’ o 1—o
hlci ﬁf 1 _ﬁl
hh’ y/ 1 — yt
ch’ s 1-6
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holds in general. This equation means that the inten-

sity distributions along the plus line and the minus line

are mutually antisymmetric with respect to the points

¢ =nmr. This is the case for equations (10), (13) and (28).
On the other hand, when the condition

Pr=Pr=(1—P%/2 (P°+P}i+Po=
is satisfied, the relation
D(9)=D(p)=D+(—p)=D-(—¢)=

T (3Ph—Pem=
m=—oo

holds. This means that the intensity distributions along
the plus line and the minus line are not only the same
but also symmetric with respect to the points g =nn
on each line. This is the case for equation (15) (Wilson)
and (35) (Jagodzinski). In deriving these equations, we
omitted all primes in Tables 5 and 9, and this omission
leads to the result

1) (46)

; EPY—%)cosmp (47)

m=—oo

0 1
1
K
1 0/ ..
Equation (48) means that P, is obtained from P; by
inversion with respect to the centre of the matrix. In
this case, we can show that

Y, =UY,U 49)

by mathematical induction (Kakinoki & Komura,
1954a). Consequently, from equation (42) we can see
that the equality (47) holds because the condition (46)
has been satisfied.

In order to analyse the mutually antisymmetric inten-
sity distributions along the plus line and the minus line,
we must distinguish quantities for a positive form, such
as wy, a, f, ... from those for the corresponding nega-
tive form, such as w;, o', #, ... (Kakinoki & Komura,
1954b). In fact, only by doing so could we analyse the
pattern of ' martensite of Cu;Al by the use of equa-
tion (28) (Nishiyama, Kakinoki & Kajiwara, 1965;
Kajiwara & Fujita, 1966; Kajiwara, 1967),

There have been published a number of calculations
for various models such as double (extrinsic)-deforma-
tion fault (Johnson, 1963), triple-deformation fault
3a'(1 —o'

Dy(p)= (=)
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(Sato, 1966), single- and double-deformation faults
(Warren, 1963), deformation and twin (growth) faults
(Gevers, 1954; Warren, 1959). Although all these cases
have so far been treated by the difference equation
method, they can be treated more easily and less am-
biguously by the present method if the P-table is cor-
rectly set in each case as shown in the Appendix, except
for the case of deformation and twin (growth) faults
treated by Gevers and Warren, which involves some
problems to be further discussed elsewhere.

APPENDIX

Calculations for various models proposed by other
investigators and for related models

Many calculations by the difference equation method,
based on various models, have been reported. Here we
show that the same results can be derived more easily
and less ambiguously by the present method. In order
to save the space, we show only important points of
calculation without any detailed explanation.

(1) Double (extrinsic)-deformation fault (Johnson, 1963)

The complete P-table is shown in Table 13 and we

have

1—a’ 0 0«
Step 1: P;= = .
ep 1 ( 0 0) and P, (10)

Step 2: w=1/(1+a') and w'=o'/(1+a').
) 1 la'\ [(1—a')e a'e*\m™
Step 3: T= 3o SPUr (1“,) ( o 0 )
Ty={-2¢'+(1-3a)e}/(1+ ).
—(l—a)e —a'e*
Step 4: F(x)= ¥=( *a)g v
—& x
x2—(l—a)ex—a'e=0
a=—(1-a)e and a,=-—a's.

Step 5 with formula 2:
Co=2(1—-a"+a?) Ci=(1—a')a'~&*) Cy=—a'e*
Dy=6a'(1—a")/(1+a) D;={3c'(1—a")/(1+a")}e

1 —cos(pF+60°) (50)

I+o

=o' +a’24(1—a'){a’ cos p+cos(p +60°)} +a’ cos(2p +60°)

Table 13. Complete P-table for the case of double (extrinsic)-deformation fault (Johnson)

A
fa =w/3=1/{31+a")} A4
fao=wB=w|3(1+a)) A
fB=w/3 B
fer=w[3 B’ 1
fc =w/3 C 1—a
fer=w[3 Cc’

A’ B B’ C c’

1—o o
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Equation (50) is the same as equation [37] given by
Johnson.
(2) Triple-deformation fault (Sato, 1966)

The complete P-table is shown in Table 14 and we
have

Step 2: w=1/(14+2a") and w' =w""=a"/(1+2a") .

1
1+ 27 SPUL

La” o\ [(1—a')ea’e* 0\ ™
1o oz“) 0 0 &*
1o o e* 0 0

Ti={(1—o'")e+ 30" 'e*}/(1 +20'") and
Ty={—30""24+(1 —4a')e*}/(1 +2a"") .
x—(1—a')e —a"e* 0
Step 4: F(x)= o - x
—g* 0 X
x3—(1—a"ex2—a' =0

"

a,=0 and a;=—0a'".

Step 3: Ty=

—g* =

a=—(1-a")e

Step 5 with formula 3:
Co=2(1—a'" +a"?) C;=—(1—a'")e*
Co=a"(1—a")e C3=—a"
Ey={1+20""—(1—a'"2)e}E' Ey=(—o''+&—e*)E’
E,=¢*E’ with F'=3a"(1—a'")/(1+2a")
Dy=3E' Dy=2¢E' and D,=¢*E’

6all 1 _all
D= gy

Equation (51) is the same as that given by Sato. In
the present case, one of roots of the characteristic equa-
tion is x;=e=exp(+i120°) and, from equation (39)
we have c¢;=(1—f)* where f=3w'=3a""/(1+2").
Hence we must add the Laue function

sin2{N (¢ F120°)/2}

Ls@=0-fy sin2{(p F 120°)/2}

to ND.(p). In the present case, the factor {l—cos(p
"F120°)} appears in both the numerator and the de-
nominator of D.(p) and they are cancelled out.

1=2a"(T— ") —2a"(1 + ) cos(p + 60°) +4a’ cos¥(p + 60°) *

DIFFRACTION BY A ONE-DIMENSIONALLY DISORDERED CRYSTAL. II.

(3) Multiple-deformation fault

The calculation mentioned above can easily be ex-
tended to a more general case. We show here only P,
and P, for g=4 and 5 where g is the number of the
successive deformation faults.

-« 000 000
g=4 P,= 0 000 P,— 0010
0 000 0001
0 000 1000
1-20000 0x000
0 0000 00100
g=5P = 0 0000 ) P,=1 00010
0 0000 00001
0 0000 10000

It is noticed that there is such a root as |x,|=1 when
g=3n.

(4) Single and double-deformation faults (Warren,

1963)

The complete P-table is shown in Table 15 and we
have

Step 2: w=1/(1+a') and w'=o'/(1 +a') .

1
Step 3: T= Wspur

1 &'\ [(I—a—a)e+oae* a'c*\ ™
1o e* 0

Ty=—{(a+2a")— (1 —2¢—3a")e}/(1+ ') .
1—cos ¢ 1)

— 1_ — Do ek ok
Step 4: F(x)=tx (1= :)8 R
—e x
x2—{(l—-a—a)e+oac*}x—a'e=0
a=—{(l-a—a)e+ac*} and
Step 5 with formula 2:
Co=2(1-o'+a') -3l —ax—a')
Ci=d(l—a—a)+a(l—a')
—{(l—a—a)—a(l —a)}e* C,= —a'e*
Do={20' +a(l—«')}D’ D,=a'eD’ with
D'=3(1-a—a)/(1+a)

a,=—o's.

Table 14. Complete P-table for the case of triple-deformation fault (Sato)

A
fa =w/3=1/{3(1+2a")} A

far =w3=a"/{3(1+24")} A

fAu =w"/3 =u"/{3(l + 2a")} A"

fB =W/3 B

for =w[3 B
Far=w'[3 B” !
fc _ w/3 C l ___au
for =w[3 ¢

forr=w"3 c”

A/

Au B B’ B” C C; CU
l —a” al
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Table 15. Complete P-table for the case of single- and double-deformation faults (Warren)
A A’ B B’ C c’
f1 =w/3=1/(301 +a)} A l—a—a P o
far=wi3=a']{3(1 +a)} A 1
S =w/3 B o o l—a—o
fer=w[3 B’ 1
fc =w/3 C l—a—o’ o o
fer=w'[3 c’ 1
Table 16. A part of the complete P-table for the case of single-, double- and triple-deformation faults
(A) B B’ B” B C Cc’ c” Cc”
A l—oq—a'—0o” o ' a’’
A’ 1
A" 1
A 1
11 n 2’ +o(1—a')+20" cos(p £ 120°) B
Di(p)=- ( 1:}?,“) (-2(1 — o +a?)—3a(l —a—a)+2{a’'(1 —a—a') +a(l —a')} cos g\ . (52)
o
—2{1—o—a' —a(l —a")} cos(p F120°)—2a’ cos(2p F 120°)

Equation (52) is easily verified to be the same as War-
ren’s result. This equation becomes equation (50)
(Johnson) for a=0 and also equation (10) (Paterson)
if o’ is put equal to 0 and « is replaced by 1—a.

(5) Combination of different kinds of faults

Table 16 shows a part of the P-table in the case
where single-, double- and triple-deformation faults
coexist.

Table 17 shows the P, ,-table in the case where the
case s=2, and single- and double-deformation faults
coexist. We can similarly treat any combination of
different kinds of fault when desired.

Table 17. P, ,-table for the case where s=2,
and single- and double-deformation faults coexist

S G G’
S l—a—o’ o o
G 1-8-p B B
(c4 1
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